DocuSign Envelope ID: 28B9C9D6-C99E-41EB-8C31-309E2311CDF8

5864

REFERENCE

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

SHEET NO. **DESCRIPTION** TITLE SHEET LEGEND SITE PLAN 5-6 CROSS SECTIONS 7-10 BORE LOGS

APPENDIX

SHEET NO. **DESCRIPTION**

LABORATORY TEST RESULTS

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY <u>HAYW</u>OOD

PROJECT DESCRIPTION SR 1395 (COVE CREEK ROAD) SOUTH OF COVE CREEK GAP IN THE GREAT SMOKY MOUNTAINS NATIONAL PARK

SITE DESCRIPTION RETAINING WALL NO. 1 FROM -L- STA. 13 + 48.15, 15.52' LT, TO -L- STA. 18 + 60, 13.57' LT STATE PROJECT REFERENCE NO. 20 R - 5864

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNOS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DECREE OF RELIBBILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS WITH THE ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- IES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT
 OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS
 OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
 FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE
 CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

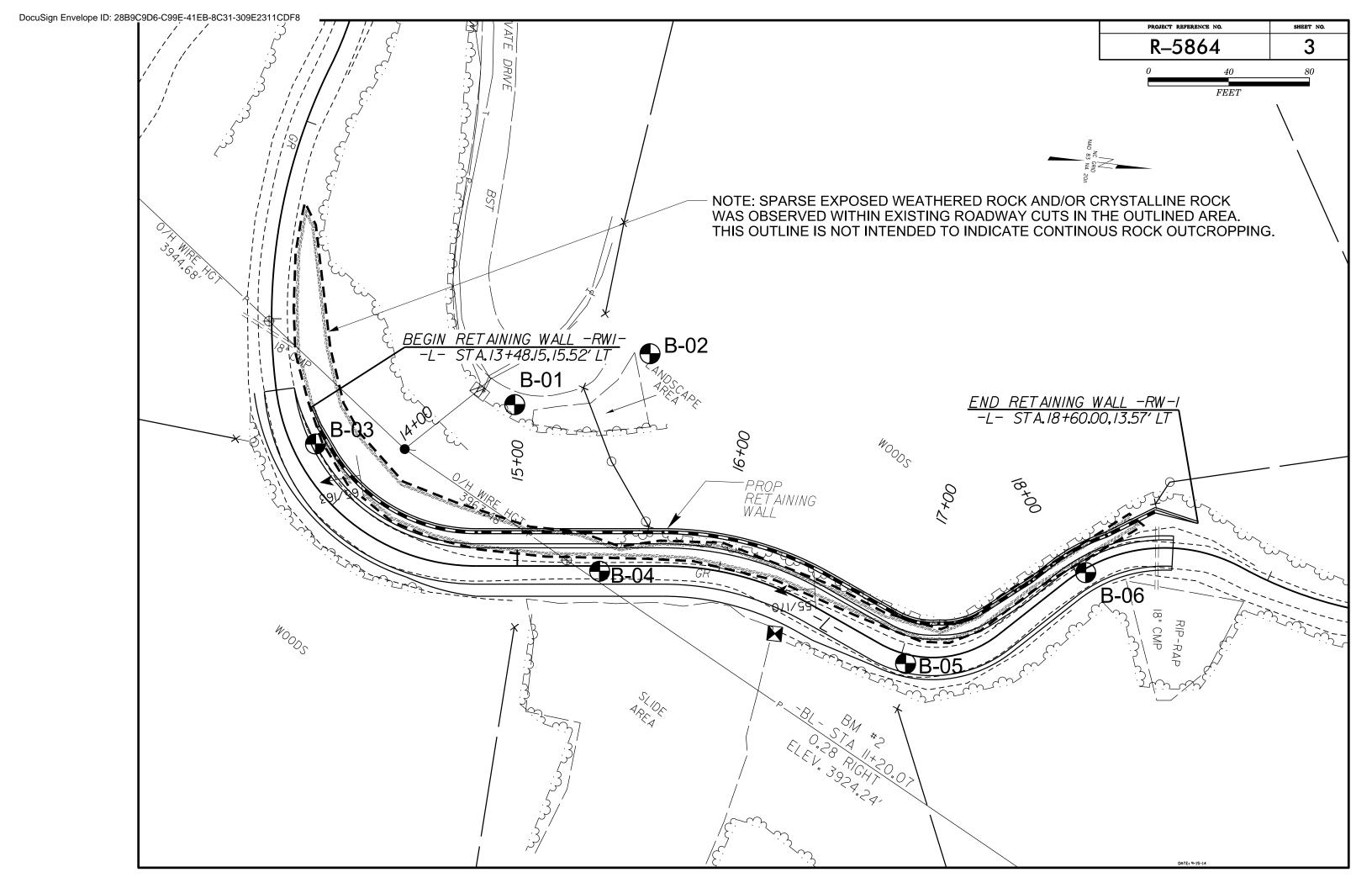
HPC LANE, R.W. CROCKETT, S.C. INVESTIGATED BY __LANE, R.W. DRAWN BY __CROCKETT, S.C. CHECKED BY __HAMM, J.R.

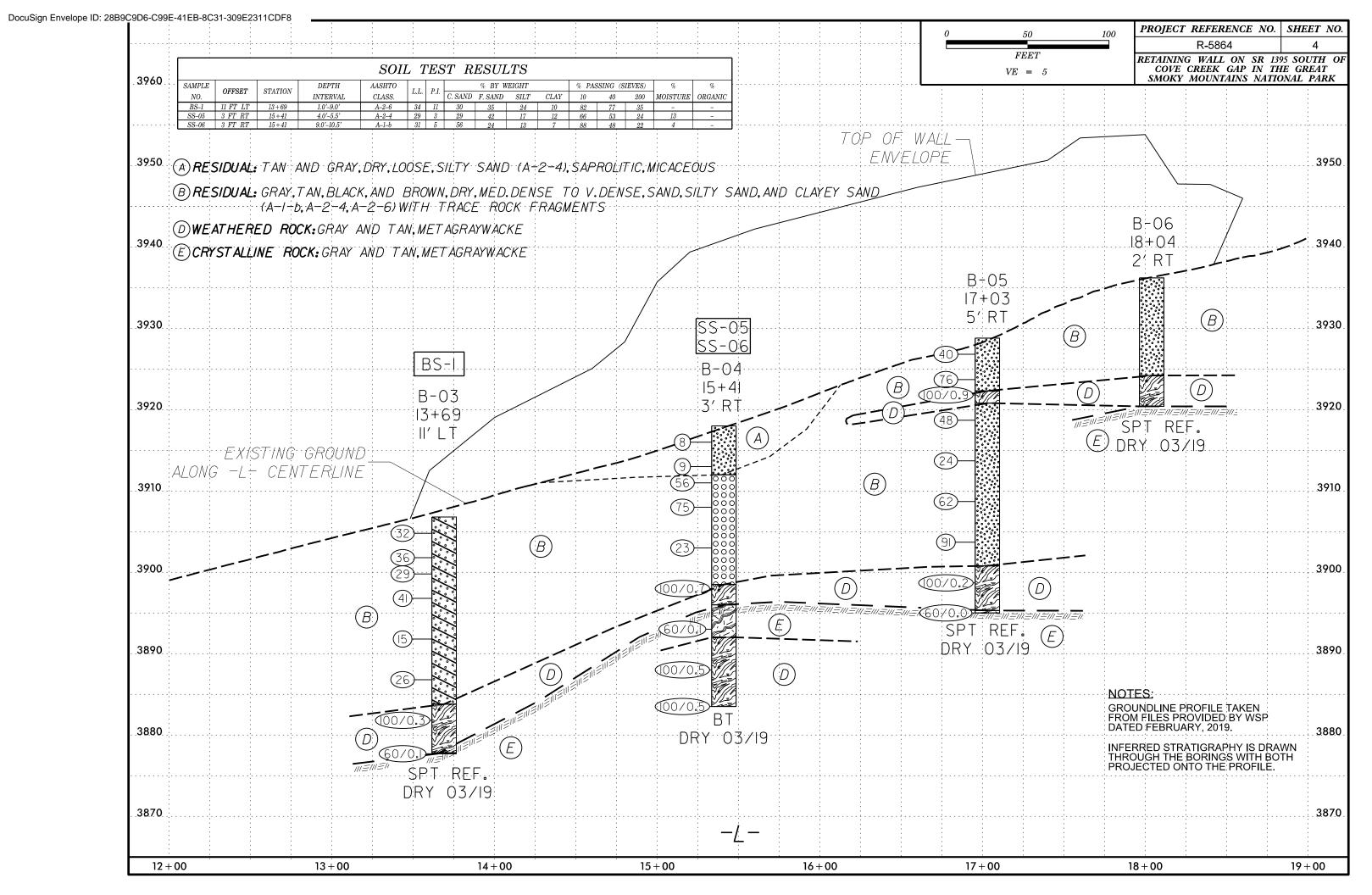
PERSONNEL

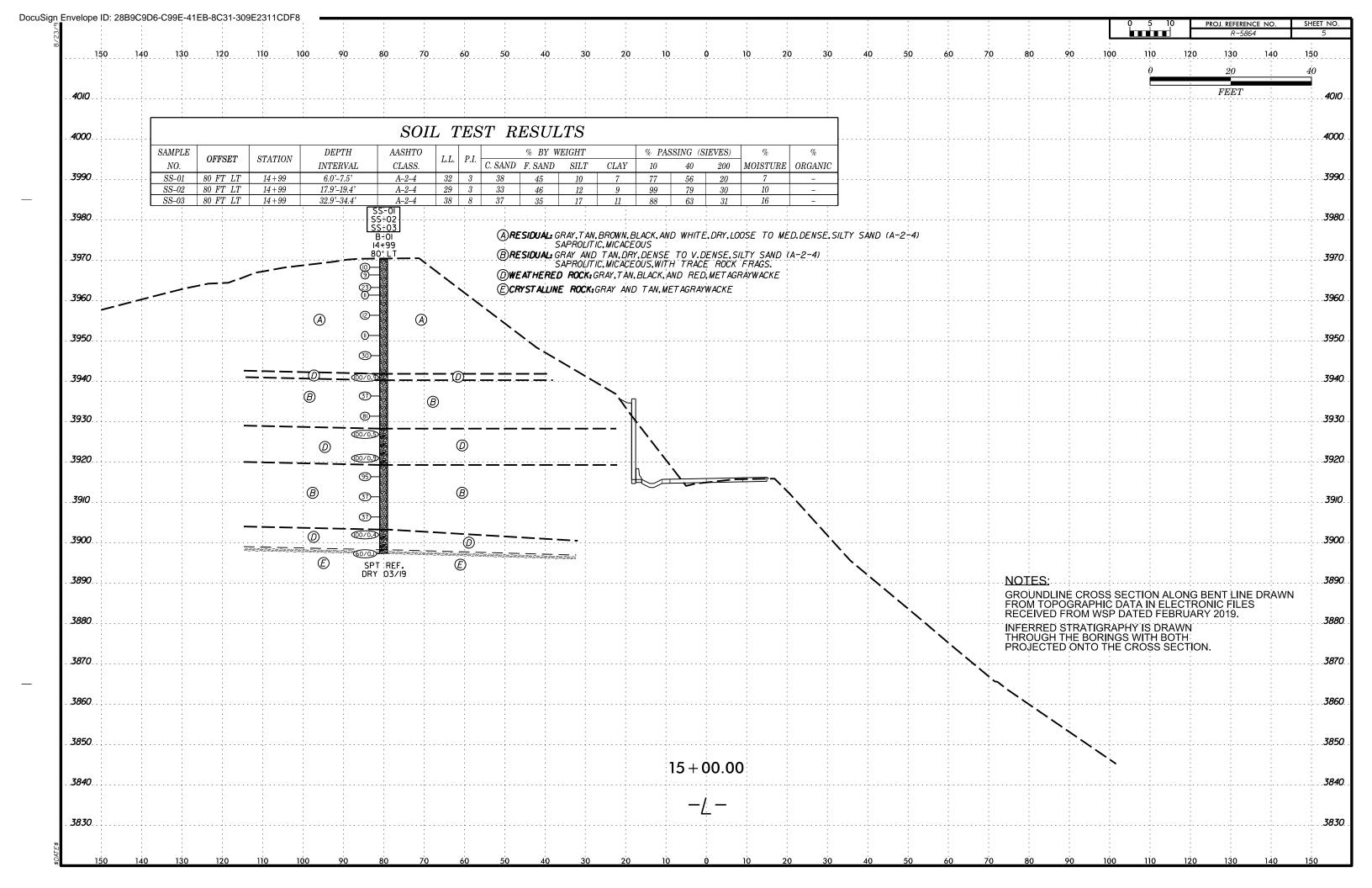
DATE <u>JULY</u> 2019

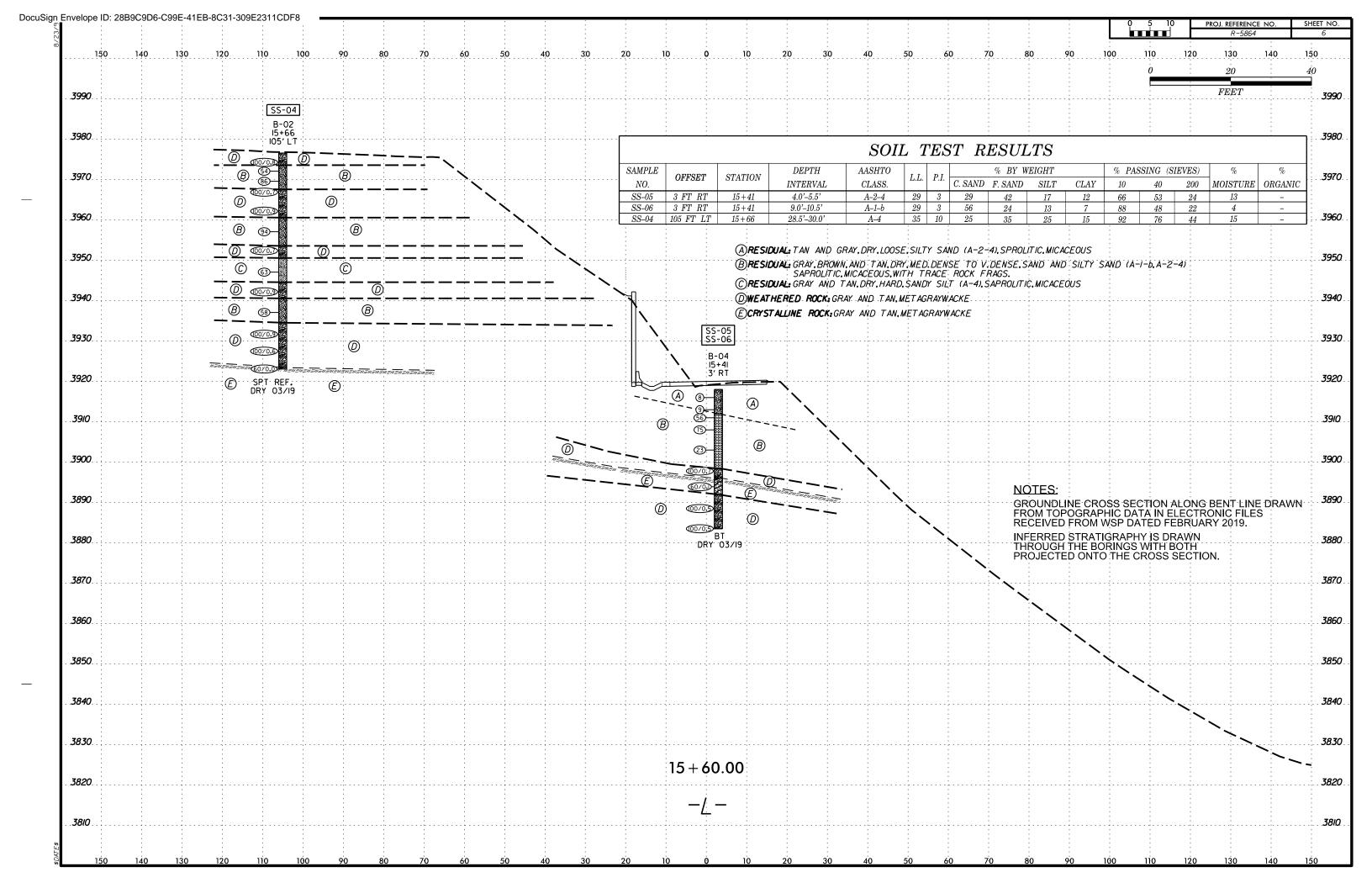
SUBMITTED BY __FALCON ENG.

R-5864


2


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FILOHI POWER AUGER AND YIELD LESS THAN 180 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 286, ASTM DISBG). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING; CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINET FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF.GRAY, SILTY CLAY, WOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6 SOIL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35%, PASSING *280) (> 35%, PASSING *280) GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. MINERALOGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAQLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED, AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL, SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED. CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, ONEISS, GABBRO, SCHIST, ETC.	ALLUYIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE. CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-2-7 A-3 A-6, A-7 SYMBOL \$\begin{array}{cccccccccccccccccccccccccccccccccccc	COMPRESSIBLITY SLIGHTLY COMPRESSIBLE MODERATELY COMPRESSIBLE LL = 31 - 50 LL > 50 PERCENTAGE OF MATERIAL ORGANIC MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 2 - 3% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING WATER LEVEL AFTER 24 HOURS PERCHED WATER LEVEL AFTER 24 HOURS MISCELLANEOUS SYMBOLS	NON-CRYSTALLINE ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK (NCR) ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN SEDIMENTARY ROCK COASTAL PLAIN SEDIMENTARY ROCK COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED WEATHERING FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE. SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORATION AND WEATHERING EFFECTS, IN GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORATION AND WEATHERING EFFECTS, IN CRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORATION BORD STRENGTH AS COMPARED WITH FRESH ROCK. MODERATEL JA ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH	COLLUYIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK. DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH, FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL. FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
RANGE OF STANDARD RANGE OF STANDARD RANGE OF UNCONFINED COMPRESSIVE STRENGTH COMP	ROADWAY EMBANKMENT (RE) WITH SOIL DESCRIPTION SOIL SYMBOL ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT INFERRED SOIL BOUNDARY AND INFERRED ROCK LINE MONITORING WELL PIEZOMETER INSTALLATION MITHORITATION MONITORING WELL PIEZOMETER INSTALLATION TEST BORING WITH CORE WITH CORE SOUNDING ROD TEST BORING WITH CORE WITH CORE SPT N-VALUE	(MOD, SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK' SOUND WHEN STRUCK, IF TESTED, WOULD YIELD SYT REFUSAL SEVERE (SEV.) ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SYT N VALUES > 100 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. IF TESTED, WOULD YIELD SYT N VALUES < 100 BPF COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEGGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK SEGMENTS EQUAL TO OR CREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUM AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STO. SIEVE SIZE	UNDERCUT EXCAVATION UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL ABBREVIATIONS AR - AUGER REFUSAL BT - BORING TERNINATED MICA MICACEOUS WEA WEATHERED C.L CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OPT - OTNAMIC PENETRATION TEST OPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC C - VOID RATIO F - FINE FOSS FOSSILIFEROUS SL SILT, SILTY FRACTURED, FRACTURES FRAC FRACTURED, FRACTURES FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRACS FRAGMENTS M' - MOISTURE CONTENT HI HIGHLY EQUIPMENT USED ON SUBJECT DRILL UNITS: CME-45C CME-550X WAADVANCER STEEL TEST UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL WEA VACETHER, FREST WEA WEATHERED WEA WEATHERED WEA WEATHERED WEA WEATHERED WEA WEATHERED WEA WEATHERET TEST WEA WEATHERET SEAD SHEAR TEST SAMPLE ABBREVIATIONS S - BULK S - ROCK RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING RATIO BRILL UNITS: CME-45C CME-45C CME-550X HAND FACED FINGER BITS VANE SHEAR TEST VANE SHEAR TEST VANE SHEAR TEST TUNGCARBIDE INSERTS HAND TOOLS: POST HOLE DIGGER	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY WIDE MODERATELY CLOSE 0.16 TO 1 FOOT VERY HINLY BEDDED 0.61 - 1.5 FEET THICKLY BEDDED 0.03 - 0.03 FEET THICKLY LAMINATED CA.098 FEET INDURATION FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOND SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL HORGH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATIM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF STRATA MAD EXPRESSED AS A PERCENTAGE. STRATA ROCK CUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. STRATA LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: ELEVATIONS TAKEN FROM TIN FILE SR-I395-43_LS_TIN.TIN DATED FEBRUARY 2019 ELEVATION: FEET NOTES: FIAD - FILLED IMMEDIATELY AFTER DRILLING
COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER TRICONE TRICONE TRICONE SOUNDING ROD CORE BIT VANE SHEAR TEST	BREAKS EASILY WHEN HIT WITH HAMMER. INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER. EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1

SHEET 7

GEOTECHNICAL BORING REPORT BORE LOG

									ORE L				_				
WBS	-				TI	I P R-5864		COUNTY	/ HAYWO	OD			GEOLOGIS	T LANE, I	R. W.		
SITE	DESCR	IPTION	l Reta	aining	Wall	on SR 1395 S	South of C	Cove Cree	ek Gap in th	e Great	Smoke	ey M	ountains Natio	nal Park		GROUN	ID WTR (ft
BOR	ING NO.	B-01			S ⁻	TATION 14-	-99		OFFSET 8	80 ft LT			ALIGNMEN ⁻	Γ -L-		0 HR.	Dry
COLI	LAR ELI	EV. 3,	970.3	ft	т	OTAL DEPTH	73.0 ft		NORTHING	707,8	07		EASTING	797,602		24 HR.	FIAD
DRILL	. RIG/HAI	MMER E	FF./DA	TE H	PC8513	CME-550 81%	06/06/201	6		DRILL N	METHO	Э Н.	.S. Augers		HAMM	R TYPE	Automatic
DRIL	LER O	DOM,	<u>с.</u>		S	TART DATE	03/29/1	9	COMP. DA	TE 03/	29/19		SURFACE V	VATER DE	PTH N/	Α	
ELEV	DRIVE	DEPTH	BLC	ow co	UNT		BLOWS F	ER FOOT		SAMP.	lacktriangledown/	L		OU AND DO		PIDTION	
(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0 25	5	0	75 100	NO.	моі	O G	ELEV. (ft)	SOIL AND RO	JOK DESC	RIPTION	DEPTH (f
3975																	
	•	F										F	-				
	-	Ī										F	-	41.	TODOOU		
3970	3,969.3	1.0				 							- 3,970.3 	RE	TOPSOIL ESIDUAL		C
	3,967.4	2.9	4	5	5	10 .					D		GRA	Y TAN BLAC SAND (A-2			TY
3965		ļ	4	4	5	9::					D		-	(,,		
3303	3,964.3	6.0	12	11	12					SS-01	7%	- -	- -				
	3,962.4	7.9	6	5	6	2 - بر یا ا	3			33-01	7 % D	-	- -				
3960	-	ţ				. \$11 .							<u>-</u>				
	0.057.45	100				• • • •							_				
	3,957.4	12.9	5	6	6	12.					D	_	<u>-</u>				
3955	_	F							1				_				
	3,952.4	17.9] ::;::							-				
3950	-	†	5	5	6	11 .				SS-02	10%	<u> </u>	-				
3330	-	‡										<u> </u>	- -				
	3,947.4	22.9	11	15	15	{ : : : :` } ,							- -				
3945	-	Ł	''		"		P 30				D	<u> </u>	<u>-</u>				
	-	F										_	-				
	3,942.4	27.9	37	46	54/0.4	: : : :	L		· · · · ·			1977	3,941.9		IERED RO		28
3940	-	‡					· · · · · ·		100/0.9	'		<i>///</i>	<u>3,940.3</u>	GRAY TAN	BLACK AN	ID RED,	<u></u>
	3.937.4	320													GRAYWAC E SIDUAL	KE	J
		- 52.5	17	16	21					SS-03	16%	-	TAN A	ND GRAY, S		D (A-2-4)	SAP.,
3935	-	t					· · · · ·	52	 				-		MIO/ C		
	3,932.4	37.9	26	26	15	: : : :		1.75	.↓::::				<u>-</u>				
3930	-	F	26	36	45				81		D	_	<u>-</u>				
	-	F											3,928.3				42
	3,927.4	42.9	100/0.5						100/0.5	•			- - GR.	WEATH NAT AND TAN	IERED RC I. METAGI		ΚE
3925	-	ļ.											<u>-</u>		,		
	3.922.4	479											- -				
		77.3	23	23	77/0.4	1 : : : :							- -				
3920	-	L				 			100/0.9			9/0	3,919.3		-a		51
	3,917.4	52.9	00	10	47							-	GRAY	AND TAN, S	ESIDUAL SILTY SAN	D (A-2-4)	SAP.,
3915		F	38	48	47				95	5	D		-		MICA.		
	-	F							·				-				
	3,912.4	57.9	11	19	18	{ ::::		.			D		- -				
3910	-	‡											- -				
	3 007 4	62.0											- -				
	3,907.4	DZ.9	24	14	23	::::					D		<u>-</u> -				
3905	_	_					- 	ļ	+				_				
	3,902.4	67.9					: :÷÷.		+			477	3,903.3	WEATH	IERED RO	<u>ск</u>	67
3900		‡	100/0.4	1					100/0.4	'			- -	GRAY, ME			
29UU	-	<u> </u>							 								70
	3,897.4	72.9	60/0.1						60/0.1	,—			- 3,898.3 - 3,897.4 -		ALLINE RO		$\frac{72}{72}$
		_	00/0.1	1					50/0.1			L F	Bor	METAC ing Terminat	SRAYWAC		D — 1

GEOTECHNICAL BORING REPORT BORE LOG

									ONL							1
WBS						IP R-586		COUNT						GEOLOGIST LANE, R.		
			Reta	aining				f Cove Cre				Smoke	ey Mo	untains National Park		OUND WTR (ft)
	NG NO.				-	TATION					0 ft LT			ALIGNMENT -L-	ОН	-
COLL	AR ELE	V. 3,9	970.3	ft	TO	OTAL DEI	PTH 73.0	ft	NORT		707,8			EASTING 797,602	24 H	R. FIAD
DRILL	. RIG/HAN	IMER EI	FF./DA	TE HF	C8513	CME-550	81% 06/06/2	016			DRILL N	IETHO) H,S	. Augers	HAMMER TY	PE Automatic
DRIL	LER O	DOM, (D		S	TART DA	TE 03/29	/19	COMP	. DAT	E 03/2			SURFACE WATER DEPT	H N/A	
ELEV	DRIVE ELEV	DEPTH		W COL		_		S PER FOOT			SAMP.	/	L	SOIL AND ROCI	K DESCRIPT	ION
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50	75 	100	NO.	MOI	G	ELEV. (ft)		DEPTH (ft)
<u>389</u> 5	+					 -	<u>M</u> a	tch Line _					-+		EST REFUS	
	Ŧ												F	Elevation 3,8 METAGRA	97.3 ft IN CR:	:
	‡												F			MATELY
	‡	-												HOLE LEFT OPEN FO 5 HOURS AND I	REMAINED D	DRY
	‡	•											-			
	‡	· -											L			
	‡	· ·														
	‡															
	†	-														
	‡	•														
	‡	-														
	‡												F			
	‡												F			
	7	•											-			
	‡												F			
	#	· -											F			
	‡	•											F			
	‡												-			
	7	•											F			
	‡	•											F			
	‡	· -											F			
	‡												-			
	‡												-			
	‡	-														
	‡	·											þ			
	‡	· -											Ė			
	‡												ļ			
	‡	·											ļ			
	‡	-											-			
	‡															
	‡	-														
	‡	•														
	‡															
	†	-											-			
	‡															
	‡	· -														
	‡	·														
	‡															
	‡	- -											-			
	‡	·											-			
		•											-			

GEOTECHNICAL BORING REPORT BORE LOG

									UKE L				<u> </u>	
WBS						P R-5864			Y HAYWC				GEOLOGIST LANE, R. W.	
SITE	DESCR	IPTION	l Ret	aining	Wall o	on SR 1395	South of	Cove Cre	ek Gap in tl	ne Great	Smok	ey M	ountains National Park	GROUND WTR (ft)
BOR	NG NO.	B-02			ST	TATION 1	5+66		OFFSET	105 ft L	Г		ALIGNMENT -L-	0 HR. Dry
COLI	AR ELE	EV. 3,	976.6	ft	TO	OTAL DEP	FH 53.5 f	t	NORTHIN	G 707,8	371		EASTING 797,569	24 HR. FIAD
DRILL	. RIG/HAI	MMER E	FF./DA	TE H	PC8513	CME-550 81	% 06/06/201	16		DRILL I	METHO	D H.	S. Augers HA	MMER TYPE Automatic
DRIL	LER O	DOM,	C.		Sī	TART DATI	€ 03/29/1	9	COMP. DA	ATE 03/	29/19		SURFACE WATER DEPTH	N/A
ELEV	DRIVE ELEV	DEPTH	BLO	ow co	UNT		BLOWS	PER FOOT		SAMP.	lacksquare		SOIL AND ROCK D	NESCRIPTION.
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50	75 100	NO.	МОІ	1 - 1	ELEV. (ft)	DEPTH (fi
3980													_	
	-													
	0.075.0	10						1				34776	3,976.6 .4' TOPS WEATHEREI	
3975	3,975.6-	- 1.0	21	49	51/0.3			1	100/0.0				GRAY AND TAN, MET	TAGRAYWACKE
	3,973.1	3.5	33	27	27			<u> </u>	÷ .100/0.8	1	D		RESIDU	
3970	- -3,970.6	- 6.0	47					●54 · · ·				-	GRAY AND TAN, SILT SAP., MI	
00.0	3.968.1	8.5	17	29	57				. 986 .	1	D	_	- ·	
	<u>-3,906.1</u> -	0.5	28	62	38/0.2				100/0.7			977	3,967.6	D ROCK 9.0
3965	_	_							. 100/0./				GRAY AND TAN, MET	ragraywacke
	3,963.1	13.5	40	60/0.4	.									
0000	-	-	40	00/0.4					100/0.9	•			· 3,960.6	16.0
3960	-	_						 	+ · · · · <u> </u>	11			RESIDU GRAY AND TAN, SILT	AL
	3,958.1	18.5 _	45	47	47						D	_	SAP., MI	
3955	_	L							[."			_	_	
	3,953.1	23.5										1000	3,953.6 WEATHERE	23.0
	-		72	28/0.2					- 100/0.7	•			GRAY AND TAN, MET	
3950	_	F						i	+	1		F	- RESIDU	AL
	3,948.1	28.5	41	32	31					SS-04	15%	F	GRAY AND TAN, SAND MICA	
3945	-	F						• 63.		30-04	1570	F		99.4
00.10	- 3.943.1	33.5						: : ' : :		il		770	<u> 3,944.6</u> WEATHERE	
	-	- 55.5	50	50/0.4	1				100/0.9	•			GRAY AND TAN, MET	
3940	_	-						· · · · · · · · · · · · · · · · · · ·	+	1			- 3,940.6 - RESIDU	
	3,938.1	38.5	17	27	31			: :/: :					GRAY AND TAN, SILT SAP., MI	-· ` '
3935	-	 	''	-				- 58			D		•	
3933	2 022 4	42.5						: : :=	+	i		977	<u> </u>	D ROCK 42.0
	3,933.1 -	43.5	37	50	50/0.4								GRAY AND TAN, MET	ragraywacke
3930	-	-							_ 100/0.9	Ĭ			-	
	3,928.1	48.5	60	40/0.4	1								•	
	-		60	40/0.1					. 100/0.6	•				
3925	-	-						 	 	1			_ · 3 923 5	53.
	3,923.1	53.5	60/0.0						60/0.0	•			3,923.5 CRYSTALLIN METAGRAY	
	_	Ė										<u> </u>	Boring Terminated W	TH STANDARD
	-												PENETRATION TES Elevation 3,923.	1 ft IN CR:
	-	-											METAGRAY	NACKE
	_	ŀ										F	- -	
	-	F		[F		
	-	F		[F		
	-	F		[-	
	-	‡		[•	
	_	 											-	
	-	 		[
	-	‡												
	-	t										l t	•	

GEOTECHNICAL BORING REPORT BORE LOG R-5864 COUNTY HAYWOOD GEOLOGIS

WBS -				TII	P R-5864	COUNT	Y HAYWO	DC				GEOLOGIST LANE, R. W.		
SITE DESC	CRIPTION	Reta	aining W	all o	n SR 1395 South of	Cove Cre	ek Gap in th	e Gr	eat	Smok	еу Мо	untains National Park	GROUN	D WTR (ft)
BORING N	VO. B-03			ST	FATION 13+69		OFFSET	11 ft	LT			ALIGNMENT -L-	0 HR.	Dry
COLLAR E	ELEV. 3,9	906.81	ft	тс	OTAL DEPTH 29.1	ft	NORTHING	70	07,7	11		EASTING 797,633	24 HR.	Dry
DRILL RIG/H	HAMMER E	FF./DA	re hpc	3513	CME-550 81% 06/06/20	16		DRI	ILL M	ETHO	D H.S	. Augers HAMN	IER TYPE	Automatic
DRILLER	ODOM, (Э.		ST	FART DATE 03/28/	19	COMP. DA	ΤE	03/2	28/19		SURFACE WATER DEPTH N	/A	
ELEV DRIV (ft) CFLEV (ft)	V Cft)	BLO 0.5ft	W COUN	T .5ft	BLOWS 0 25	PER FOOT 50	75 100		MP IO	MOI	_I O @	SOIL AND ROCK DES	CRIPTION	DEPTH (ft)
3910	-										<u> </u>	3,906.8 .3' GRAVEL		0.0
3,905 3,902	‡	13		17	32					D	/_/_/_/	RESIDUAL GRAY BLACK TAN AND BR SAND (A-2-6) MICA		YEY
3900 3,900 3,897	‡	21		14	29			S	9-1	D D				
3895	+	22	22	19	4:					D	/////////////////////////////////////			
3,892	+	7	7	8	15					D				
3,887	+	12	11	15	26 · · · · · · · · · · · · · · · · · · ·					D	/ <u>/</u> //////////////////////////////////	3,883,8		23.0_
3,882	† †	100/0.3					. 100/0.3					WEATHERED R TAN AND GRAY, METAG		Œ
3.877	7.8 29.0	60/0.1					60/0.1					3.877.8 CRYSTALLINE F TAN AND GRAY, METAC Boring Terminated WITH PENETRATION TEST F Elevation 3,877.7 ft METAGRAYWA	SRAYWACK STANDAR REFUSAL at IN CR:	D

GEOTECHNICAL BORING REPORT BORE LOG

										DC)RE L	UG			_				
WBS	-				ТІ	I P R-58	64		COU	NTY	HAYWO	OD			GEOLOGIS	ST LANE,	R. W.	_	
SITE	DESCR	IPTION	l Reta	aining	Wall	on SR 13	95 8	South of	Cove C	Creel	k Gap in th	e Great	Smok	ey M	lountains Nati	onal Park		GROU	ND WTR (f
BOR	NG NO.	B-04			S	TATION	15	+41			OFFSET :	3 ft RT			ALIGNMEN	NT -L-		0 HR.	Dr
COLI	AR ELE	EV. 3,	918.0	ft	TO	OTAL DE	PTI	H 34.5	ft	ı	NORTHING	707,8	59		EASTING	797,679		24 HR.	FIA
DRILL	. RIG/HAI	MMER E	FF./DA	TE H	PC8513	CME-550	81%	6 06/06/20	16			DRILL N	IETHO	D H	.S. Augers		HAMN	IER TYPE	Automatic
DRIL	LER O	DOM,	C.		S	TART DA	ΤE	03/28/	19		COMP. DA	TE 03/2	28/19		SURFACE	WATER DE	PTH N	/A	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLC 0.5ft	0.5ft		0	25	BLOWS	PER FO		5 100	SAMP. NO.	MOI	L O G	ELEV. (ft)	SOIL AND R	OCK DES	CRIPTION	DEPTH (
3920	-	- -													 - 3,918.0	.4	' GRAVEL		(
3915	3,917.0 - 3,914.0	1.0 - 4.0	5	4	4	 . • 8 ·	:						D				ESIDUAL		
3910	3,912.0 - 3,909.0	_	6 19	34	5 22	9.	·		 •56	: : : :		SS-05	13% D	0000		AY BROWN A			
3905	3.904.0	- - -	10	45	30			: : : : : : : : : : : : : : : : : : :			75	SS-06	4%	000000000000000000000000000000000000000	- - - -				
3900	3.899.0	-	23	11	12		· • • • • • • • • • • • • • • • • • • •	23		· · · · · · · · · · · · · · · · · · ·			D	0000	- - - -				
3895		- - -	28	69	31/0.2		: L		+ ÷ ÷	-:-	100/0.7				- 3,898.5 - - _{3,896.0} GF 	RAY AND TAI	ALLINE R	RAYWAC ROCK	KE 2
8890	3,894.0 - - -	-	60/0.1								60/0.1				- - 3,892.0 - - GF		GRAYWA HERED RO N, METAG	оск	² KE
3885	3,889.0 - - -	_ 29.0 - - -	100/0.5	5						· ·	 . 100/0.5				- - -				
	3,884.0	34.0	100/0.5								100/0.5	-			- 3,883.5 - Borir	ng Terminated			3 ft IN
		-													- - - - - - - - - - - - - - - - - - -	VVIX. IVIL	TAGRAYW	VACIAL	

GEOTECHNICAL BORING REPORT BORE LOG

WBS	; <u>-</u>				TI	P R-5864		COUNT	Y HA	YWO	OD			GEOLOGIST LANE, R. W	•	
SITE	DESCR	IPTION	l Reta	aining	Wall c	on SR 1395	South of	Cove Cre	ek Gar	in th	e Great	Smok	еу М	ountains National Park	GROUN	ID WTR (ft)
BOR	ING NO.	B-05			S	TATION 1	7+03		OFFS	ET 5	ft RT			ALIGNMENT -L-	0 HR.	Dry
COL	LAR ELE	EV. 3,	928.8	ft	TO	OTAL DEP	H 33.8 f	t	NOR	THING	708,0			EASTING 797,706	24 HR.	FIAD
-				TE HE		CME-550 81							D H.	- ·	AMMER TYPE	Automatic
DRIL	LER O	DOM,				TART DATE				P. DA	TE 03/2	28/19		SURFACE WATER DEPTH	N/A	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	0.5ft	0.5ft	JNT 0.5ft	0 :		PER FOOT 50	75 	100	NO.	MOI	O G	SOIL AND ROCK DELEV. (ft)	DESCRIPTION	DEPTH (ft)
3930	3,927.8-	- 1.0					l .	·	· · ·						JAL	0.0
3925	3,924.7-	+	10	13	32				76			D D		- GRAY TAN AND RED, S - SAP., MICA., TRACE -		
3920	3,922.8- - - 3,919.7-	-	23	35 26	65/0.4				1.1·	00/0.9		D	M.	3,922.3 WEATHEREI 3,920.8 GRAY AND TAN, ME RESIDU	TAGRAYWACI JAL	
3915	3,914.7	- - - 14.1												GRAY AND TAN, SILTY MICA., TRACE RO	SAND (A-2-4) : OCK FRAGS.	SAP.,
3910	-		9	11	13		24					D		- - -		
2005	- -	- - -	28	30	32			62				D		- - - -		
3905	- 3,904. <i>1</i>	- 24.1 - -	21	22	69				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	91		D				28.0
3900	3,899.7 - - -	29.1 -	100/0.2						. 10	00/0.2				- WEATHEREI - GRAY, METAGF -		
3895	3,895.0 - - -	33.8 -	60/0.0					1	<u> · ·</u> ,	· · · 60/0.0				3,895.3 CAP95.07 CRYSTALLIN BETAGRAY Boring Terminated W PENETRATION TES	WACKE ITH STANDAR	 33.5
	-													Elevation 3,895 METAGRAY	.0 ft IN CR:	,
	- - - -													- - - -		
	- - -													<u>-</u> - - -		
!	- - -	-												- - - -		
	-	- -												- - -		
	- - -	- - -												- - -		
1	- - -													- - - -		
	- -	- - -												- - - -		
	-	-												- - - -		

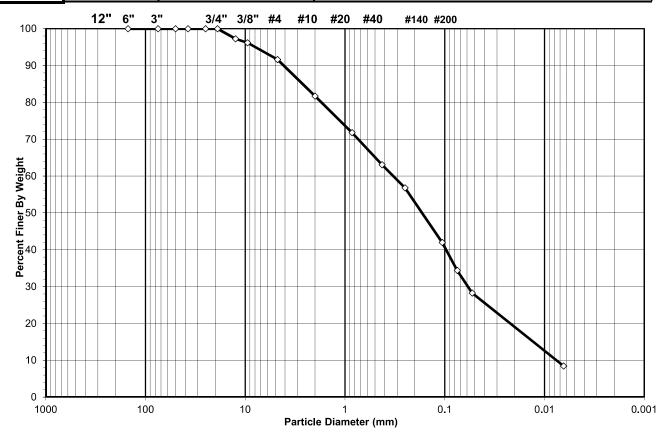
DocuSign Envelope ID: 28B9C9D6-C99E-41EB-8C31-309E2311CDF8

SHEET 10

GEOTECHNICAL BORING REPORT BORE LOG

								<u>B</u>	<u>ORE L</u>	<u>UG</u>				
WBS						P R-5864		1	Y HAYWO				GEOLOGIST LANE, R. W.	
SITE	DESCR	IPTIO	N Ret	aining	Wall	n SR 139	5 South of	Cove Cre	ek Gap in th	e Great	Smok	ey M	lountains National Park	GROUND WTR (ft)
BOR	ING NO.	B-06	3		S	TATION ^	18+04		OFFSET 2	2 ft RT			ALIGNMENT -L-	0 HR. Dry
COL	LAR ELI	EV . 3	,936.2	ft	TO	OTAL DEP	TH 15.8	ft	NORTHING	708,0	98		EASTING 797,651	24 HR. FIAD
DRILL	RIG/HA	MMER E	FF./DA	TE H	PC8513	CME-550 8	1% 06/06/20	16		DRILL I	/ETHO	D H	I.S. Augers HAMI	MER TYPE N/A
DRIL	LER C	DOM,	C.		S	TART DAT	E 03/28/	19	COMP. DA	TE 03/	28/19		SURFACE WATER DEPTH	I/A
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	0.5ft	0.5ft	_	0		PER FOOT 50	75 100	SAMP.	MOI	L O G	SOIL AND ROCK DES	SCRIPTION DEPTH (ft)
3940	-	<u> </u>											_ -	
	:	‡											- - 3,936.2 .5' GRAVEI	_ 0.0
3935	_	-					1	1	1				RESIDUAL TAN, SILTY SAND (A-2-	
		‡											LAYERS OF WEATHE	
3930		‡											-	
	-	‡						1	1				_ -	
		‡											-	
3925	_	‡						ļ · · · ·	ļ · · · · ·				- 	12.0
		‡											WEATHERED R METAGRAYWA	ROCK
		‡											- - 3,920.4	15.8
	-	ŧ											Boring Terminated BY AUG Elevation 3,920.4 ft	ER REFUSAL at t 0N CR:
	:	‡											METAGRAYW <i>A</i>	ACKE
	-	‡											<u>-</u>	
		+											-	
	:	Ŧ												
		‡											-	
		t											_	
		Ŧ											-	
	_	‡											-	
		‡											<u>-</u> -	
	:	‡											-	
	-	<u> </u>											_	
	:	Ŧ												
	:	‡											- -	
	-	<u>†</u>											_	
	:	Ŧ												
	:	‡											- -	
	-	‡											- -	
		İ											_	
] :	Ŧ												
	-	‡											<u> </u>	
	:	ţ											-	
	-	+											_	
	-	Ŧ											_	
		‡											- -	
	-	‡											- -	
	:	ŧ												
	:	Ŧ											-	
	_	‡											-	
	:	‡											-	
	.	t											_	
	-	Ŧ											-	
	:	‡											- -	
	:	‡											-	
		L								1				

DocuSign Envelope ID: 28B9C9D6-C99E-41EB-8C31-309E2311CDF8		PROJECT REPERENCE NO.	SHEET NO.
		R-5864	11
	NORTH CAROLINA DEPARTMENT OF TRANSPORTATION		
	DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT		
2864	SUBSURFACE INVESTIGATION		
35	APPENDIX		
	LABORATORY RESULTS		
'			
$ \mathcal{H} $			
REFERENC			
$ \ddot{\mathcal{H}} $			
ROJECT:			
<u> </u>			



SIEVE AND HYDROMETER ANALYSIS

NCDOT MOD. AASHTO T-88,

Client B-3 Falcon Engineering Boring No. Depth (ft) Client Reference R-5864 Slide Repair 1.0-9.0 Project No. R-2019-098-001 Sample No. BS-1 **BROWN** Lab ID R-2019-098-001-001 Soil Color

		SIEV	E ANALY	SIS	HYDROMETER
USCS	cobbles	gravel		sand	silt and clay fraction
AASHTO	cobbles	gravel		sand	silt and clay fraction

Sieve	Percent		USCS		AASHTO	NCDOT SOIL MOF	RTAR
Size (mm)	Finer		%		%		%
100	100.00	Gravel	8.38	Gravel	18.28	Coarse Sand Ret. #60	30.47
2	81.72	Sand	57.24	Coarse Sand	18.64	Fine Sand Ret. #270	34.95
0.075	34.38	Silt&Clay	34.38	Fine Sand	28.70	Silt 0.05-0.005mm	24.23
				Silt & Clay	34.38	Clay <0.005mm	10.35

 $AASHTO (GI) \qquad A-2-6 \qquad (0)$

page 1 of 3

DCN: CT-S3Y DATE 6-26-38:27/ESYISKON #CTS\FALCON\2019-098 FALCON - R-5864 SLIDE REPAIR\[2019-098-001-001 DOT SIEVEHYD10.xlsm]Data1

WASH SIEVE ANALYSIS

NCDOT MOD. AASHTO T-88,

Client	Falcon Engineering	Boring No.	B-3
Client Reference	R-5864 Slide Repair	Depth (ft)	1.0-9.0
Project No.	R-2019-098-001	Sample No.	BS-1
Lab ID	R-2019-098-001-001	Soil Color	BROWN

Minus #10 for Hygroscopic (10-15gm)		Hydrometer Specimen 50 or 100gms			
Tare No.	G	Air Dried Hydrometer Material (gm)	72.31		
Wgt.Tare + Wet Specimen (gm)	26.65	Corrected Dry Wt. of Hydro Mtrl. (gm)	68.65		
Wgt.Tare + Dry Specimen (gm)	26.06				
Weight of Tare (gm)	15.00	Weight of -#270 Material	23.74		
Weight of Water (gm)	0.59	Weight of -#10; +#270 Material	44.91		
Weight of Dry Soil (gm)	11.06	•			
Moisture Content (%)	5.3				

Tare No.	161		
Wgt. Tare + Air Dry Soil (gm)	1464.40	Dry Weight of Material Ret. #10 (gm)	214.56
Weight of Tare (gm)	239.63	Corrected Dry Sample Wt - #10 (gm)	959.05
Air Dried Wgt.Total Sample (gm)	1224.77		
Total Dry Weight Sample (gm)	1173.6	J - Factor (Percent Finer than #10)	0.8172

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	32.11	2.74	2.74	97.26	97.26
3/8"	9.5	12.63	1.08	3.81	96.19	96.19
#4	4.75	53.62	4.57	8.38	91.62	91.62
#10	2.00	116.20	9.90	18.28	81.72	81.72
#20	0.85	8.33	12.13	12.13	87.87	71.80
#40	0.425	7.33	10.68	22.81	77.19	63.08
#60	0.25	5.26	7.66	30.47	69.53	56.81
#140	0.106	12.46	18.15	48.62	51.38	41.98
#200	0.075	6.39	9.31	57.93	42.07	34.38
#270	0.053	5.14	7.49	65.42	34.58	28.26
Pan	-	23.74	34.58	100.00	=	-

Tested By 129-05-0411 Date 4/5/19 Checked By SFS Date 4/5/19	Tested By	129-05-0411	Date	4/5/19	Checked By	SFS	Date	4/5/19
--	-----------	-------------	------	--------	------------	-----	------	--------

HYDROMETER ANALYSIS NCDOT MOD. AASHTO T-88,

Client B-3 Falcon Engineering Boring No. 1.0-9.0 Client Reference R-5864 Slide Repair Depth (ft) Project No. R-2019-098-001 Sample No. BS-1 Lab ID R-2019-098-001-001 Soil Color **BROWN**

(%) Factor (mm) (%) NA NA NA NA 40.7 0.01316 0.0581 33.2
10.3 0.01311 0.0064 8.5

Corrections	
a - Factor	0.994
Percent Finer than # 10	81.72
Specific Gravity	2.68 Assumed

Hydrometer test is performed on - #10 sieve material. Note:

23

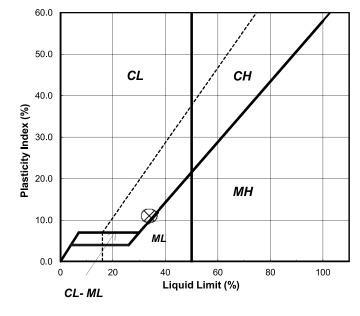
PΙ 11

Tested B	y 129-05-0411	Date	4/4/19	Checked By	SFS	Date	4/5/19
page 3 of 3	DCN: CT-S3Y DAT	E 12/1/5/099/19RE	KAISJUEIN TES\FALCON	\2019-098 FALCON - R-5864 S	LIDE REPAIR\[2019-09	08-001-001 DOT SI	EVEHYD10.xlsm]Data1

ATTERBERG LIMITS

AASHTO T-89, T-90 (DOT Modified)

Client Falcon Engineering Boring No. B-3 Client Reference R-5864 Slide Repair Depth (ft) 1.0-9.0 R-2019-098-001 Sample No. BS-1 Project No.


Lab ID R-2019-098-001-001 Soil Description **BROWN LEAN CLAY**

Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve material, Airdried) sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description

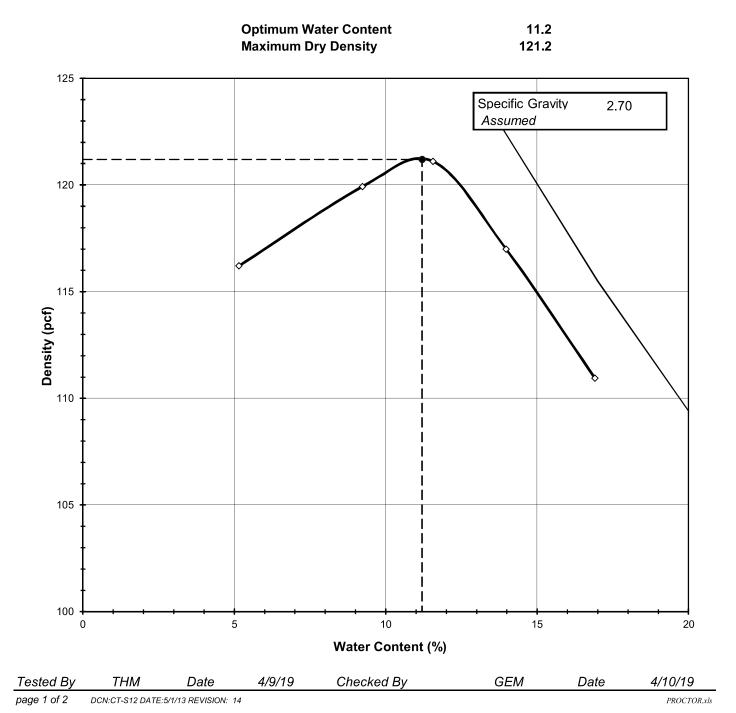
	drometer Analysis graph page for the compl	ioto matoriai accomption .
Liquid Limit Test	1	
Tare Number	B-2	
Wt. of Tare & WS (gm)	29.89	
Wt. of Tare & DS (gm)	26.22	
Wt. of Tare (gm)	15.39	
Wt. of Water (gm)	3.7	
Wt. of DS (gm)	10.8	
Moisture Content (%)	33.9	
Number of Blows	25	

Plastic Limit Test	1	2	Range	Test Results	
Tare Number	A-B	В-В		Liquid Limit (%)	34
Wt. of Tare & WS (gm)	22.89	21.94			
Wt. of Tare & DS (gm)	21.48	20.72		Plastic Limit (%)	23
Wt. of Tare (gm)	15.51	15.49) /	
Wt. of Water (gm)	1.4	1.2		Plasticity Index (%)	11
Wt. of DS (gm)	6.0	5.2			
(0)				USCS Symbol	CL
Moisture Content (%)	23.6	23.3	0.3		
Note: The acceptable range o	f the two Moistu	re contents	is ± 2.6		

Plasticity Chart

	Tested By 129-05-0411	Date	4/4/19	Checked	' By	SFS	Date	4/5/19
page 1 of 1	DCN:	CT-S4B	DATE:	10/8/01	REVISION:	2		

DATE: 10/8/01 REVISION: 2


MOISTURE DENSITY RELATIONSHIP

AASHTO T99-18

Client: Falcon Engineering
Client Reference: R-5864 Slide Repair
Project No.: R-2019-098-001
Lab ID: R-2019-098-001-001

Boring No.: B-3
Depth (ft): 1.0-9.0
Sample No.: BS-1
Test Method STANDARD

Visual Description: Brown Sandy Silty Clay

MOISTURE - DENSITY RELATIONSHIP

AASHTO T99-18

 Client:
 Falcon Engineering
 Boring No.:
 B-3

 Client Reference:
 R-5864 Slide Repair
 Depth (ft):
 1.0-9.0

 Project No.:
 R-2019-098-001
 Sample No.:
 BS-1

 Lab ID:
 R-2019-098-001-001

Visual Description: Brown Sandy Silty Clay

Total Weight of the Sample (g)	NA
As Received Water Content (%)	NA
Assumed Specific Gravity	2.70
Percent Retained on 3/4"	NA
Percent Retained on 3/8"	NA
Percent Retained on #4	NA
Oversize Material	Not included
Procedure Used	Α

Test Type	,	STANDARD
Rammer Weight (lb)		5.5
Rammer Drop (in)		12
Rammer Type	M	ECHANICAL
Machine ID	R	606
Mold ID	R	173
Mold diameter		6"
Weight of the Mold (g) Volume of the Mold (cm³)		5490
Volume of the Mold (cm ³)		2119

Mold / Specimen

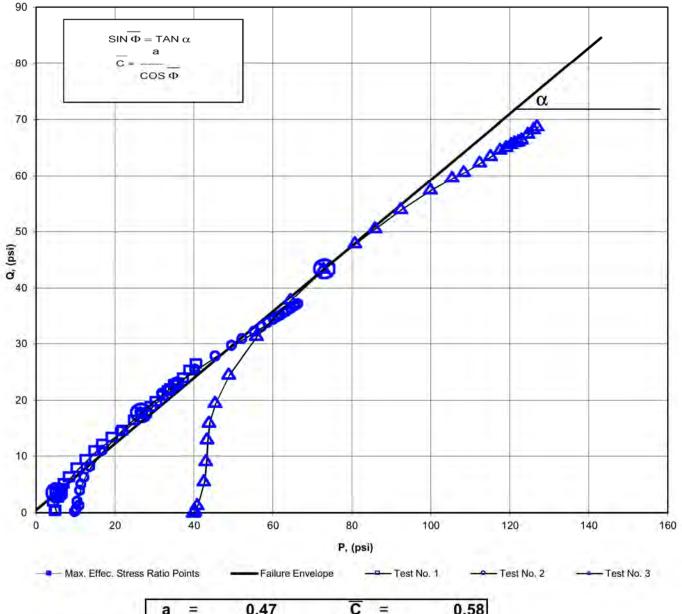
Point No.	1	2	3	4	5
Wt. of Mold & Wet Sample (g)	9640	9939	10078	10019	9895
Wt.of Mold (g)	5490	5490	5490	5490	5490
Wt. of Wet Sample (g)	4150	4449	4589	4529	4405
Mold Volume (cm³)	2119	2119	2119	2119	2119

Moisture Content / Density

Tare Number	851	860	825	852	826
Wt. of Tare & Wet Sample (g)	503.00	493.80	643.50	438.00	580.60
Wt. of Tare & Dry Sample (g)	485.19	463.49	590.99	400.99	515.96
Wt. of Tare (g)	139.70	135.10	136.70	136.20	133.70
Wt. of Water (g)	17.81	30.31	52.51	37.01	64.64
Wt. of Dry Sample (g)	345.49	328.39	454.29	264.79	382.26
Wet Density (g/cm³)	1.96	2.10	2.17	2.14	2.08
Wet Density (pcf)	122.2	131.0	135.1	133.3	129.7
Moisture Content (%)	5.2	9.2	11.6	14.0	16.9
Dry Density (pcf)	116.2	119.9	121.1	117.0	110.9

Zero Air Voids

Moisture Content (%)	13.5	17.0	20.0	
Dry Unit Weight (pcf)	123.5	115.5	109.4	


Tested By	THM	Date	4/9/19	Checked By	GEM	<i>Date</i> 4/10/19

AASHTO T-297

Client: Falcon Engineering Client Reference: R-5864 Slide Repair Project No.: R-2019-098-001 Lab ID: R-2019-098-001-001 Boring No.: B-3 Depth (ft): 1.0-9.0 BS-1 Sample No.:

Consolidated Undrained Triaxial Test with Pore Pressure

а	=	0.47	<u>C</u> =	0.58
α	=	30.4	$\overline{\Phi} =$	35.98

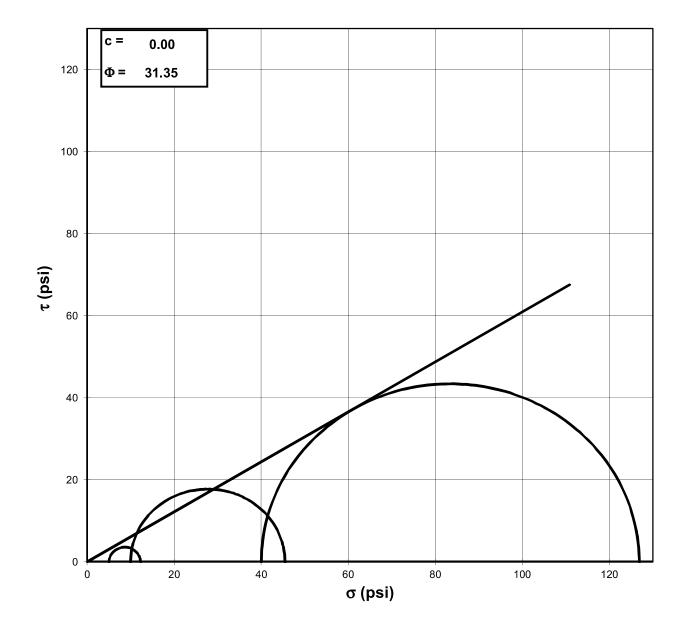
Tested By: 129-04-0411 Date: 4/16/19 Date: 4/25/19 Approved By: MPS

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

page 1 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

MOHR TOTAL STRENGTH ENVELOPE

AASHTO T-297


Client: Falcon Engineering Boring No.: B-3 Client Reference: R-5864 Slide Repair Depth (ft): 1.0-9.0 Project No.: R-2019-098-001 Sample No.: BS-1

BROWN SILT (REMOLDED)

R-2019-098-001-001

Visual Description:

Lab ID:

Failure Based on Maximum Effective Principal Stress Ratio

Tested By: 129-04-0411 Date: 4/16/19 Approved By: MPS Date: 4/25/19

DCN: CT-S28 DATE: 4/12/13 REVISION: 3

NOTE: GRAPH NOT TO SCALE

AASHTO T-297

Client:Falcon EngineeringBoring No.:B-3Client Reference:R-5864 Slide RepairDepth (ft):1.0-9.0Project No.:R-2019-098-001Sample No.:BS-1

Lab ID: R-2019-098-001-001

Visual Description: BROWN SILT (REMOLDED)

	LOAD		DEFORMATION		DODE DDESSIID	F
Q	=	3.61	Dial Reading /	After Conso	olidation (mil)	490
Р	=	5.34	Dial Reading		` '	415
			Initial Dial Re	O (,	314
MAX	IMUM OBLIQUITY PO	INTS				
			Final Change	e (ml)		22.5
Resp	onse (%)	100	Final Burette		(ml)	25.5
	Pressure		Initial Burette	_	` '	48.0
	Conf. Pressure (psi)	5.0	VOLUME CI			
	Pressure (psi)	50.0				
	Pressure (psi)	55.0	Avg. Length:	5.897	Avg. Diam.:	2.864
			Length 4:	5.898	Diameter 4:	2.864
PRESSURES (psi)			Length 3:	5.891	Diameter 3:	2.864
			Length 2:	5.902	Diameter 2:	2.864
Test	No.	1	Length 1:	5.896	Diameter 1:	2.864
_	e No.	1			IENSIONS (in)	

LOAD	DEFORMATION	PORE PRESSURE
(LB)	(IN)	(PSI)
1.7	0.000	50.0
3.2	0.001	50.0
4.0	0.002	50.0
22.7	0.008	52.2
30.9	0.014	51.6
36.5	0.020	51.8
41.2	0.029	52.1
45.7	0.038	53.3
51.2	0.050	52.4
61.5	0.071	52.5
76.5	0.101	52.4
96.0	0.137	52.0
115.6	0.173	51.4
137.0	0.215	50.6
151.9	0.245	49.8
168.3	0.286	48.5
187.3	0.343	47.2
211.8	0.403	46.0
229.8	0.449	45.2
250.6	0.508	44.3
264.6	0.553	43.9
280.7	0.598	43.3
294.5	0.643	42.8
302.2	0.673	42.5
312.9	0.703	42.2
316.4	0.733	41.9
321.7	0.763	41.7
337.4	0.808	41.2
359.3	0.853	41.0
380.2	0.898	40.5

 Tested By:
 129-04-0411
 Date:
 4/16/19
 Input Checked By:
 GEM
 Date:
 4/25/19

 page 3 of 11
 DCN: CT-S28 DATE:
 4/12/13 REVISION: 3
 Sigmatriax.x/s

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS AASHTO T-297

Client:Falcon EngineeringBoring No.:B-3Client Reference:R-5864 Slide RepairDepth (ft):1.0-9.0Project No.:R-2019-098-001Sample No.:BS-1

R-2019-098-001-001

Lab ID:

Visual Description: BROWN SILT (REMOLDED)

Effective (Confining Pres	ssure (psi)	5.0		Stage No. Test No		1 1			
INITIAL D	IMENSIONS				VOLUME CHANGE					
nitial Sample Diameter (in) nitial Sample Area (in²)		Initial Sample Length (in) Initial Sample Diameter (in) Initial Sample Area (in²) Initial Sample Volume (in³)			5.90 2.86 6.44 37.99		Volume After Consolida Length After Consolida Area After Consolidatio	tion (in)		34.66 5.72 6.059
Strain (%)	Deviation Stress	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principle Stress Ratio	Ā	P	Q		
0.01 0.04 0.14 0.24 0.34 0.50 0.67 0.87 1.24 1.77 2.40 3.03 3.75 4.28 5.01 6.00 7.05 7.84 8.88 9.67 10.46 11.24 11.77 12.29 12.81 13.34	0.24 0.38 3.46 4.81 5.73 6.48 7.21 8.10 9.74 12.12 15.19 18.23 21.49 23.72 26.12 28.79 32.23 34.69 37.43 39.19 41.23 42.89 43.76 45.04 45.28 45.77	-0.01 0.01 2.24 1.59 1.83 2.07 3.32 2.42 2.55 2.44 2.00 1.36 0.59 -0.21 -1.45 -2.79 -3.97 -4.82 -5.66 -6.08 -6.71 -7.24 -7.52 -7.81 -8.06 -8.32	5.29 5.42 6.27 8.27 8.94 9.45 8.94 10.72 12.23 14.72 18.23 21.91 25.94 28.98 32.62 36.63 41.25 44.56 48.14 50.31 52.99 55.18 56.33 57.90 58.38 59.13	5.1 5.0 2.8 3.5 3.2 3.0 1.7 2.6 2.5 2.6 3.7 4.5 5.3 6.5 7.8 9.9 10.7 11.1 12.3 12.6 12.9 13.1 13.4	1.047 1.076 2.231 2.390 2.783 3.181 5.170 4.081 4.910 5.648 5.985 5.945 5.826 5.511 5.021 4.673 4.573 4.573 4.517 4.496 4.523 4.508 4.490 4.481 4.505 4.456 4.425	-0.03 0.03 0.65 0.33 0.32 0.32 0.46 0.30 0.26 0.20 0.13 0.07 0.03 -0.01 -0.06 -0.10 -0.12 -0.14 -0.15 -0.16 -0.16 -0.17 -0.17 -0.17 -0.17 -0.18 -0.18	5.17 5.23 4.54 5.87 6.07 6.21 5.34 6.68 7.36 8.67 10.64 12.80 15.20 17.12 19.56 22.23 25.14 27.21 29.42 30.72 32.37 33.74 34.45 35.37 35.74 36.25	0.12 0.19 1.73 2.40 2.86 3.24 3.61 4.05 4.87 6.06 7.59 9.11 10.74 11.86 13.06 14.39 16.12 17.35 18.72 19.59 20.62 21.45 21.88 22.52 22.64 22.88		

page 4 of 11

AASHTO T-297

Client:	Falcon Engineering	Boring No.:	B-3
Client Reference:	R-5864 Slide Repair	Depth (ft):	1.0-9.0
Project No.:	R-2019-098-001	Sample No.:	BS-1

Lab ID: R-2019-098-001-001

Visual Description: BROWN SILT (REMOLDED)

Stage No.	1	INITIAL SAM	MPLE DIN	MENSIONS (in)	
Test No.	2	Length 1:	5.995	Diameter 1:	2.864
		Length 2:	5.995	Diameter 2:	2.864
PRESSURES (psi)		Length 3:	5.995	Diameter 3:	2.864
		Length 4:	5.995	Diameter 4:	2.864
Cell Pressure (psi)	60.0	Avg. Length:	5.995	Avg. Diam.:	2.864
Back Pressure (psi)	50.0				
Eff. Conf. Pressure (psi)	10.0	VOLUME CI	HANGE		
Pore Pressure		Initial Burette	e Reading	g (ml)	24.0
Response (%)	98	Final Burette	Reading	(mI)	9.2
, , ,		Final Change	e (ml)	,	14.8
MAXIMUM OBLIQUITY PO	INTS				
		Initial Dial R	eading (m	nil)	258
P =	26.64	Dial Reading	g After Sa	turation (mil)	261
Q =	17.75	Dial Reading	After Cons	olidation (mil)	301

	LOAD		DEF	ORMAT	ION	PORE PRESSU	RE	•
	(LB)			(IN)		(PSI)		
	9.7			0.000		50.0		1
	12.3			0.002		50.0		
	12.7			0.003		50.0		
	15.4			0.009		50.1		
	23.7			0.015		50.0		
	32.5			0.021		51.2		
	57.4			0.029		52.5		
	72.0			0.038		53.3		
	87.6			0.050		53.7		
	111.8			0.071		54.1		
	148.4			0.100		53.8		
	194.8			0.136		52.8		
	240.9			0.171		51.1		
	286.0			0.212		48.9		
	313.6			0.242		47.1		
	346.4			0.284		44.8		
	381.2			0.341		42.0		
	410.3			0.400		39.7		
	429.8			0.446		38.2		
	453.1			0.505		36.5		
	468.3			0.551		35.4		
	482.6			0.596		34.5		
	494.8			0.640		33.7		
	503.8			0.670		33.1		
	511.0			0.700		32.7		
	518.9			0.730		32.2		
	526.6			0.760		31.8		
	538.6			0.805		31.1		
	550.6			0.850		30.6		
	558.1			0.880		30.2		
	566.4			0.910		29.8		
Tested By: 12	29-04-0411	Date:	4/16/19		Input Checked By:	GEM	Date:	4/25/

page 5 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS AASHTO T-297

Client: Falcon Engineering Boring No.: B-3 R-5864 Slide Repair Client Reference: Depth (ft): 1.0-9.0 R-2019-098-001 BS-1 Project No.: Sample No.: Lab ID: R-2019-098-001-001

Visual Description: BROWN SILT (REMOLDED)

Effective Confining Pressure (psi) 10.0				Stage No. Test No		1 2		
INITIAL D	IMENSIONS				VOLUME CHANGE			
Initial Sample Length (in) Initial Sample Diameter (in) Initial Sample Area (in²) Initial Sample Volume (in³)			6.00 2.86 6.44 38.62		Volume After Consolidation (in ³) Length After Consolidation (in) Area After Consolidation (in ²)			37.66 5.95 6.327
Strain (%)	Deviation Stress	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principle Stress Ratio	Ā	P	Q
0.03 0.05 0.15 0.25 0.35 0.48 0.63 0.84 1.19 1.68 2.29 2.88 3.57 4.07 4.77 5.73 6.72 7.49 8.49 9.25	0.42 0.48 0.91 2.21 3.60 7.51 9.79 12.21 15.96 21.56 28.60 35.50 42.11 46.08 50.68 55.35 59.06 61.42 64.13 65.79	0.00 -0.01 0.04 -0.01 1.16 2.47 3.28 3.73 4.07 3.82 2.75 1.09 -1.13 -2.88 -5.26 -7.99 -10.34 -11.86 -13.51 -14.60	10.41 10.48 10.85 12.22 12.43 15.02 16.50 18.47 21.87 27.74 35.83 44.39 53.23 58.95 65.93 73.33 79.38 83.27 87.62 90.38	10.0 10.0 9.9 10.0 8.8 7.5 6.7 6.3 5.9 6.2 7.2 8.9 11.1 12.9 15.3 18.0 20.3 21.8 23.5 24.6	1.042 1.048 1.091 1.221 1.407 1.998 2.459 2.950 3.698 4.494 4.951 4.992 4.788 4.581 4.323 4.079 3.906 3.812 3.730 3.675	0.00 -0.03 0.04 -0.01 0.33 0.34 0.31 0.26 0.18 0.10 0.03 -0.03 -0.06 -0.11 -0.15 -0.18 -0.20 -0.21 -0.23	10.20 10.24 10.40 11.11 10.63 11.27 11.60 12.36 13.90 16.95 21.54 26.64 32.17 35.91 40.59 45.66 49.85 52.56 55.56 57.48	0.21 0.24 0.45 1.11 1.80 3.75 4.89 6.10 7.98 10.78 14.30 17.75 21.06 23.04 25.34 27.68 29.53 30.71 32.06 32.89
10.01 10.76 11.26 11.76 12.27 12.76 13.52 14.28 14.78 15.28	67.26 68.43 69.31 69.91 70.61 71.27 72.30 73.28 73.87 74.55	-15.49 -16.36 -16.87 -17.35 -17.81 -18.23 -18.88 -19.42 -19.78 -20.19	92.74 94.78 96.17 97.25 98.41 99.49 101.16 102.69 103.64 104.73	25.5 26.3 26.9 27.3 27.8 28.2 28.9 29.4 29.8 30.2	3.640 3.597 3.581 3.557 3.540 3.526 3.505 3.492 3.481 3.470	-0.23 -0.24 -0.25 -0.25 -0.26 -0.27 -0.27 -0.27 -0.27 -0.28	59.11 60.56 61.51 62.30 63.10 63.85 65.01 66.05 66.71 67.45	33.63 34.21 34.66 34.96 35.31 35.64 36.15 36.64 36.94 37.27

AASHTO T-297

Client: Falcon Engineering Boring No.: B-3 Client Reference: R-5864 Slide Repair Depth (ft): 1.0-9.0 R-2019-098-001 BS-1 Project No.: Sample No.:

R-2019-098-001-001 Lab ID:

Visual Description: BROWN SILT (REMOLDED)

Stage No.	1	INITIAL SA	MPLE DIN	MENSIONS (in)	
Test No.	3	Length 1:	5.995	Diameter 1:	2.864
		Length 2:	5.995	Diameter 2:	2.864
PRESSURES (psi)		Length 3:	5.995	Diameter 3:	2.864
		Length 4:	5.995	Diameter 4:	2.864
Cell Pressure (psi)	90.0	Avg. Length:	5.995	Avg. Diam.:	2.864
Back Pressure (psi)	50.0				
Eff. Conf. Pressure (psi) 40.0		VOLUME O	HANGE		
Pore Pressure		Initial Buret	Initial Burette Reading (ml)		48.0
Response (%) 98		Final Burett	Final Burette Reading (ml)		
		Final Chang	Final Change (ml)		
MAXIMUM OBLIQUIT	TY POINTS				
	_	Initial Dial F	Reading (m	nil)	168
P =	73.10	Dial Readin	g After Sa	turation (mil)	169
Q =	43.42	Dial Reading	After Cons	solidation (mil)	251
LOAD		DEEODMATION		DODE DRESSU	DE

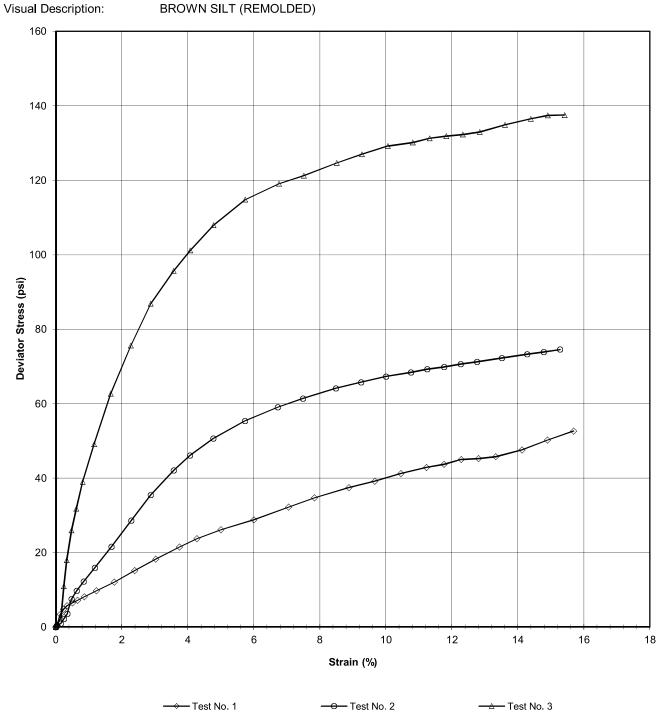
					()	
LOAD		DE	FORMAT	ON	PORE PRESSUI	RE
(LB)			(IN)		(PSI)	
14.8			0.000		50.0	
16.9			0.001		50.0	
19.0			0.003		50.0	
30.8			0.009		50.3	
83.0			0.014		52.8	
126.9			0.020		55.9	
176.3			0.028		59.5	
213.1			0.037		61.9	
258.5			0.049		64.0	
323.0			0.069		65.6	
409.9			0.099		65.3	
494.5			0.135		63.2	
569.1			0.170		60.4	
630.2			0.211		56.8	
668.5			0.241		54.5	
717.5			0.283		51.3	
770.2			0.340		47.3	
806.9			0.400		43.9	
827.5			0.445		41.9	
859.4			0.504		39.6	
882.7			0.549		38.1	
905.4			0.595		36.7	
919.9			0.640		35.6	
932.5			0.670		34.9	
942.2			0.700		34.3	
950.3			0.729		33.6	
960.7			0.760		33.2	
982.6			0.805		32.5	
1003.2			0.851		31.9	
1016.1			0.882		31.5	
1023.0			0.912		31.0	
Tested By: 129-04-041	1 Date:	4/16/19		Input Checked By:	GEM	Date:

page 7 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS AASHTO T-297

Client: Falcon Engineering Boring No.: B-3 R-5864 Slide Repair Client Reference: Depth (ft): 1.0-9.0 R-2019-098-001 BS-1 Project No.: Sample No.: Lab ID: R-2019-098-001-001

Visual Description: BROWN SILT (REMOLDED)


Effective (Confining Pres	ssure (psi)	40.0		Stage No. Test No		1 3	
NITIAL DIMENSIONS					VOLUME CHANGE			
Initial Sample Diameter (in) 2. Initial Sample Area (in²) 6.			6.00 2.86 6.44 38.62		Volume After Consolidation (in³) Length After Consolidation (in) Area After Consolidation (in²)			36.66 5.91 6.200
Strain (%)	Deviation Stress	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principle Stress Ratio	A	P	Q
0.02 0.05 0.16 0.24 0.34 0.63 0.82 1.17 1.67 2.28 2.88 3.57 4.08 4.78 5.74 6.76 7.52 8.52 9.28 10.06	0.34 0.68 2.59 10.99 18.03 25.93 31.79 38.98 49.14 62.66 75.62 86.84 95.72 101.14 107.92 114.84 119.12 121.22 124.62 127.00 129.19	0.00 0.00 0.26 2.81 5.87 9.47 11.91 14.00 15.60 15.31 13.15 10.37 6.81 4.48 1.28 -2.73 -6.10 -8.06 -10.41 -11.95 -13.31	40.39 40.73 42.37 48.22 52.20 56.51 59.92 65.03 73.58 87.40 102.51 116.52 128.95 136.70 146.69 157.62 165.26 169.32 175.08 179.00 182.54	40.0 40.0 39.8 37.2 34.2 30.6 28.1 26.0 24.4 24.7 26.9 29.7 33.2 35.6 38.8 42.8 46.1 48.1 50.5 52.0 53.4	1.009 1.017 1.065 1.295 1.528 1.848 2.130 2.497 3.010 3.533 3.812 3.926 3.880 3.844 3.784 3.685 3.582 3.520 3.470 3.442 3.421	-0.01 0.00 0.10 0.26 0.33 0.37 0.38 0.37 0.32 0.25 0.18 0.12 0.07 0.05 0.01 -0.02 -0.05 -0.07 -0.09 -0.10 -0.11	40.22 40.39 41.08 42.73 43.19 43.55 44.02 45.54 49.01 56.07 64.70 73.10 81.09 86.13 92.73 100.20 105.70 108.71 112.77 115.50 117.95	0.17 0.34 1.29 5.49 9.01 12.97 15.89 19.49 24.57 31.33 37.81 43.42 47.86 50.57 53.96 57.42 59.56 60.61 62.31 63.50 64.59
10.82 11.33 11.84 12.34 12.85 13.61 14.40 14.91 15.42	130.19 131.25 131.87 132.28 132.96 134.84 136.47 137.42 137.54	-14.36 -15.09 -15.70 -16.36 -16.84 -17.47 -18.13 -18.52 -18.96	184.60 186.39 187.62 188.68 189.85 192.36 194.65 195.99 196.55	54.4 55.1 55.7 56.4 56.9 57.5 58.2 58.6 59.0	3.393 3.380 3.365 3.345 3.337 3.344 3.346 3.346 3.331	-0.11 -0.12 -0.12 -0.13 -0.13 -0.13 -0.14 -0.14	119.51 120.76 121.68 122.54 123.37 124.94 126.41 127.28 127.78	65.10 65.63 65.94 66.14 66.48 67.42 68.23 68.71 68.77

AASHTO T-297

Client: Boring No.: B-3 Falcon Engineering Client Reference: R-5864 Slide Repair Depth (ft): 1.0-9.0 BS-1 Project No.: R-2019-098-001 Sample No:

Lab ID: R-2019-098-001-001

Approved By: MPS Date: 4/16/19 Date: 4/25/19 Tested By: 129-04-0411

page 9 of 11

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS

AASHTO T-297

Client: Falcon Engineering Client Reference: R-5864 Slide Repair Project No.: R-2019-098-001

Lab ID: R-2019-098-001-001 2.68 Specific Gravity (Assumed)

BROWN SILT (REMOLDED) Visual Description:

SAMPLE CONDITION SUMMARY

Boring No.:	B-3	B-3	B-3
Depth (ft):	1.0-9.0	1.0-9.0	1.0-9.0
Sample No.:	BS-1	BS-1	BS-1
Test No.	T1	T2	Т3
Deformation Rate (in/min)	0.002	0.002	0.002
Back Pressure (psi)	50.0	50.0	50.0
Consolidation Time (days)	1	1	1
Moisture Content (%) (INITIAL)	11.5	11.5	11.5
Total Unit Weight (pcf)	135.2	135.3	136.1
Dry Unit Weight (pcf)	121.2	121.3	122.1
Moisture Content (%) (FINAL)	18.2	16.8	15.8
Initial State Void Ratio,e	0.380	0.379	0.371
Void Ratio at Shear, e	0.259	0.345	0.301

Tested By: 129-04-0411 Date: 4/16/19 Input Checked By: GEM Date: 4/25/19

page 10 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 DocuSign Envelope ID: 28B9C9D6-C99E-41EB-8C31-309E2311CDF8 SHEET 20

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS

AASHTO T-297

4/25/19

Date

Falcon Engineering Client: Boring No.: B-3 Client Reference: R-5864 Slide Repair Depth (ft): 1.0-9.0 R-2019-098-001 Sample No.: Project No.: BS-1 R-2019-098-001-001

TEST 1 INITIAL

Lab ID:

TEST 1 FINAL

<u>N/A</u>

TEST 2 INITIAL

N/A

TEST 3 INITIAL

N/A

TEST 2 FINAL

TEST 3 FINAL

MPS Date 4/16/19 Approved By Tested By 129-04-0411

page 11 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net